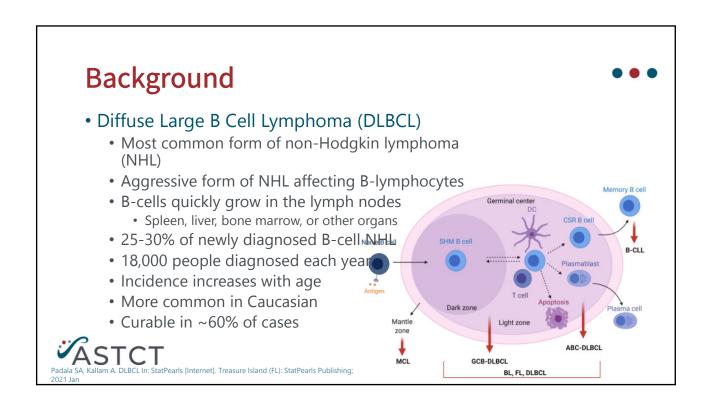
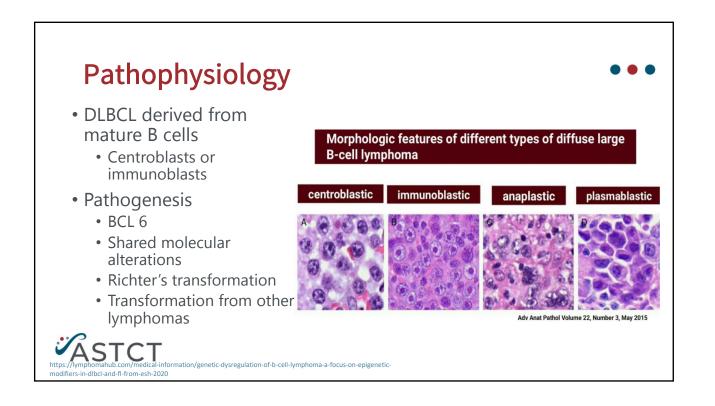


Autologous Transplant versus Chimeric Antigen Receptor T-cell Therapy for Relapsed DLBCL in Partial Remission

Lindsey Catlin, PharmD PGY2 Oncology Pharmacy Resident St. Luke's Cancer Institute

Disclosures


Neither myself nor any of my affiliates have any conflicts of interest regarding this presentation.



Objective

Evaluate the role of autologous transplant versus treatment with chimeric antigen receptor t-cell therapy in patients with relapsed DLBCL in partial remission.

Prognosis

- Dependent on staging, histopathology, extranodal involvement, age and performance status
- Decreased overall survival correlated with
 - Age > 60 years of age
 - Eastern Cooperative Oncology Group (ECOG) >2
 - LDH elevation
 - Clinical stage III or IV
 - >1 extranodal involvement
- Relapse rate of 40%
 - Patients who relapse within 2 years reported 1.4-year median survival

Standard-of-care

- Current standard-of-care for relapsed disease
 - Fit patients
 - Alternative salvage therapy
 - Followed by high-dose chemotherapy
 - Patient achieves a complete remission (CR)
 - Autologous hematopoietic cell transplant (Auto-HCT)
 - Patient achieves a partial remission (PR)
 - Autologous hematopoietic cell transplant (Auto-HCT)
 - Chimeric antigen receptor T-cell (CAR-T)

Definitions

Deauville Score			
1	No uptake		
2	Uptake < mediastinum		
3	Uptake ≥ mediastinum < liver		
4	Uptake moderately increased above liver at any site		
5	Markedly increased uptake at any site including new sites of disease		

Modality	no Classif		Stable Disease	Progressive Disease
СТ	Lymph nodes ≤ 1.5 cm in LDI Complete disappearance of radiologic evidence of disease	Single lesion: ↓ > 50% in SPD of up to six lymph nodes or extra nodal sites	↓ ≤50% in SPD of up to 6 lymph nodes or extra nodal sites (no criteria for progressive disease are met)	1) New lymphadenopathy or ↑; single node must be abnormal with: a) Ldi > 1.5 cm and b) PPD ≥ 50% and c) LDI or Sdi ↑ 0.5 cm if ≤ 2.0 cm and ↑ 1.0 cm if > 2.0 cm
FDG PET- CT	Scores 1, 2, 3 in nodal or extra nodal sites with or without a residual mass	Scores 4 or 5 with ↓ uptake compared with baseline And residual mass(es)	Scores 4 or 5 with no obvious change in FDG uptakebreviations LDI: longest transvers	Scores 4 or 5 in any lesion with 1 uptake from baseline and/or new FDG-avid foci e diameter oct of the perpendicular

Previous literature in relapsed/refractory **DLBCL**

Trial	Population	Intervention	Outcome
Mills, W 1995	• 107 participants	BEAM then Auto-HCT	ORR 73% (41% CR and 32% PR)5-year OS 41%5-year PFS 35%
TRANSCEND NHL 001	• 269 participants	Lisocabtagene maraleucel (Breyanzi)	• 73% ORR (CI 66.8-78) • 53% CR (CI 46.8-59.4)
JULIET	• 93 participants	Tisagenlecleucel (Kymriah)	 Best ORR 52% (CI 41-62) CR 40% PR 12% 1-year RFS 65%
ZUMA-1	• 111 participants	Axicabtagene ciloleucel (Yescarta)	OR 82%CR 54%18-month survival 52%

Mills W, et al. BEAM chemo and autoHCT for R/R nHL J Clin Oncol. 1995 Mar;13(3):588-95 Abramson JS, et al (TRANSCEND NHL 001). Lancet. 2020 Sep 19;396(10254):839-852. Schuster SJ, et al. Tisagenlecleucel in Adult R/R DLBCL. N Engl J Med. 2019 Jan 3;380(1):45-56. Neelapu SS, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy rBCL N Engl J Med. 2017 Dec

Currently Ongoing Trials

Trial	Population	Intervention	Comparison	Outcome
BELINDA	 355 participants Phase 3 randomized, open-label study 	Investigator's choice (R-ICE, R-GemOx, R-GDP, R-DHAP) + cyclophosphamide and fludarabine or bendamustine and tisagenlecleucel	Investigator's choice (R-ICE, R- GemOx, R-GDP, R- DHAP) + BEAM and Auto-HCT	• EFS • OS • ORR • DOR • Others
TRANSFORM	• 175 participants • Phase 3 randomized, open-label study	Conditioning regimen of cyclophosphamide and fludarabine followed by lisocabtagene maraleucel	Standard of Care (R-DHAP, R-ICE, or R-GDP) + BEAM and Auto-HCT	• EFS • CRR • PFS • OS • Others
ZUMA-7	 359 participants Phase 3 randomized, open-label study 	Conditioning regimen of cyclophosphamide and fludarabine followed by axicabtagene ciloleucel	Standard Therapy (R-ICE) + BEAM and Auto-HCT	• EFS • ORR • OS • mEFS • Others

Polling Question #1

- What is the preferred CAR-T product for DLBCL at your institution?
 - A. Axicabtagene ciloleucel (Yescarta™)
 - B. Tisagenlecleucel (Kymriah™)
 - C. Lisocabtagene maraleucel (Breyanzi™)
 - D. Clinical Trial

Background

Purpose

 Currently no consensus for subsequent treatment of patients with a partial remission (PR)

Objectives

- Primary endpoint was progression free survival (PFS)
- Secondary endpoints
 - Overall survival (OS)
 - Cumulative incidence of relapse/progression

Study Design & Methods

Design

• Retrospective analysis of patients with DLBCL who achieved a PR as the best response to therapy who received either auto-HCT or CAR-T.

Methods

 Patients were identified via the Center for International Blood & Marrow Transplant Research (CIBMTR) registry database.

Eligibility

Inclusion Criteria

- Adult patients (≥18 years of age)
- DLBCL high grade B-cell lymphoma
 - MYC and BCL2 and/or BCL6 rearrangements
- Primary Mediastinal large B-cell Lymphoma
- Achieved a partial remission
- Underwent either auto-HCT or CAR-T with axi-cel

Exclusion Criteria

- Patients with available negative PET scan
- Patients in CAR-T cohort with prior auto-HCT

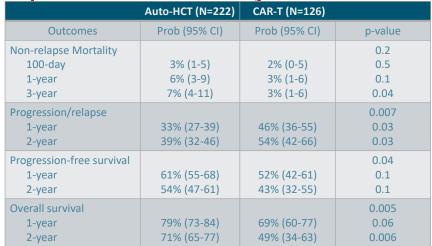
Statistical Analysis

- Baseline characteristics
 - Kruskal-Wallis test for continuous variables
 - Pearson chi-square test for categorical variables
- Kaplan-Meier and log-rank test used to compare OS and PFS
- Gray's test for competing events
 - Hemopoietic recovery
 - Non-relapse mortality (NRM)
 - Relapse/progression rates
- Cox proportional hazard model for PFS and OS
- Proportional cause-specific hazard model for NRM and relapse or progression

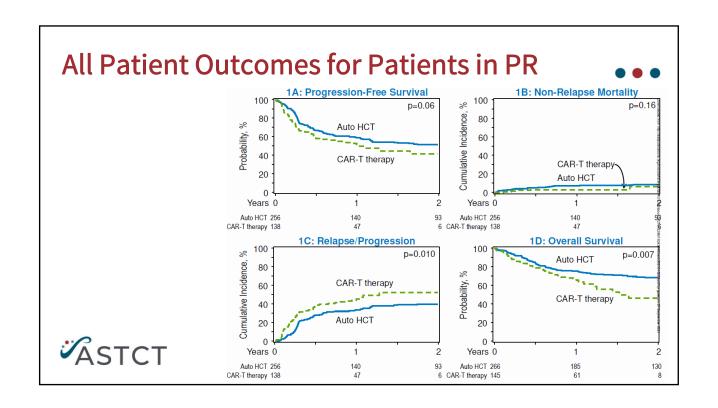
Population

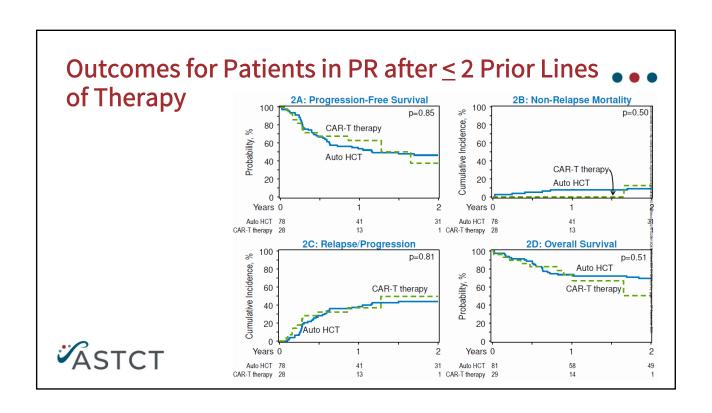
- 411 patients with DLBCL
 - 266 who received auto-HCT
 - 145 who received CAR-T
- Significant differences between race, prior lines of therapy, and largest node prior to treatment
- Fewer patients in the auto-HCT group had largest pretreatment residual node
- 14 patients received CAR-T
 after post auto-HCT relapse

Baseline Characteristics	Auto-HCT	CAR-T
Median age (range) ≥60 years (%)	58 (18-80) 118 (63)	60 (24-91) 89 (61)
Male	167 (63)	89 (61)
Stage at diagnosis Stage III-IV (%) Missing	163 (61) 42 (16)	80 (55) 35 (24)
Refractory to first line (%) Missing	160 (60) 6 (2)	79 (55) 22 (15)
Time from diagnosis ≤ 12 months > 12 months Missing	103 (39) 162 (61) 1 (0)	64 (44) 81 (56) 0
Lines of therapy Median (range) More than 2 lines- no (%)	2 (1-6) 89 (33)	3 (2-11) 97 (67)


Univariable Analysis

Д	uto-HCT (N=266)	CAR-T (N=145)	
Outcomes	Prob (95% CI)	Prob (95% CI)	p-value
Non-relapse Mortality			0.2
100-day	4% (2-7)	2% (0-5)	0.3
1-year	7% (4-11)	3% (1-6)	0.05
3-year	9% (5-13)	6% (1-16)	0.6
Progression/relapse			0.01
1-year	34% (28-40)	45% (37-54)	0.03
2-year	40% (33-46)	52% (41-63)	0.05
Progression-free survival			0.1
1-year	59% (53-65)	52% (43-61)	0.2
2-year	52% (46-58)	42% (30-53)	0.1
Overall survival			0.01
1-year	76% (70-81)	67% (59-75)	0.1
2-year	69% (63-74)	47% (33-60)	0.004
Abbreviations:			


N eval: number evaluated Auto-HCT: autologous hematopoietic cell Prob: probability transplantation CAR-T: chimeric antigen receptor T-cells


Subgroup Univariable Analysis

N eval: number evaluated Prob: probability transplantation
CAR-T: chimeric antigen receptor T-cells

Author's Conclusions

- Auto-HCT does not improve progression free survival but does have a lower incidence of relapse and improved overall survival
- Results of future randomized phase III trials help determine optimal second-line therapy
- Some patients may still receive chemotherapy despite potential for CAR-T to provide superiority
 - · Patients may not meet eligibility criteria
 - · Lack of immediate access to CAR-T
 - · Patient or physician preferences

Evaluation

Strengths

- Limited studies on optimal treatment sequence in relapsed patients
- Currently no NCCN guideline recommendation for sequence

Weaknesses

- Retrospective analysis
- Unable to determine clinical decisions behind treatment modality selection
- Partial remission criteria not standardized
- Limited subgroup analyses
 - Small sample size

Reviewer's Conclusions

- Further evaluate the impact of multiple lines of therapy prior to auto-HCT or CAR-T
- Patients received auto-HCT prior to CAR-T approval
- Future directions
 - Prospective randomized- controlled trials
 - Cost analysis versus outcomes
 - Results of current ongoing studies
 - BELINDA
 - TRANSFORM ZUMA-7

Polling Question #2

- What is the standard of practice at your institution for patients with relapsed DLBCL?
 - A. Proceed to CAR-T
 - B. Proceed to auto-HCT
 - C. No standard of practice currently in place

Autologous Transplant versus Chimeric Antigen Receptor T-cell Therapy for Relapsed DLBCL in Partial Remission

Lindsey Catlin, PharmD
PGY2 Oncology Pharmacy Resident
St. Luke's Cancer Institute

