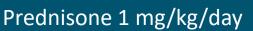

E. Behren Ketchum, PharmD
PGY2 Oncology Pharmacy Resident
Augusta University Medical Center
University of Georgia College of Pharmacy

Email: eketchum@augusta.edu



Severity Grading

Severity	Mild	Moderate	Severe
Number of organs	1 - 2	≥ 3	≥ 3
Severity of organs	1 (excluding lung)	≥ 3 organs – 1 1 organ (not lung) – 2 Lung – 1	3 (or lung 2)

First-Line Treatment

• with or without tacrolimus, sirolimus, or cyclosporine

Mild cGVHD

Topical Immunosuppressants or systemic steroids

Previous Studies

Study (date)	Design	Population	Intervention	Outcome
<u>CNI</u> – K, et al. Blood. 2002.	Prospective, randomized	 Newly diagnosed Extensive PLTs ≥ 100,000 N=287 	• PRED + CSP • PRED	TRM at 5 years • CSP (17%) vs. Non-CSP (13%) No difference in OS, recurrent malignancy, secondary therapy, discontinuation of IST Avascular necrosis: 13% vs 22% (p = 0.04) CSP may reduce steroid toxicity, but not TRM
Steroids – S, et al. Blood. 1988.	Prospective, randomized, double-blind, placebo- controlled	Newly diagnosedExtensiveN=179	 PRED + placebo (Group 1) PRED + AZA (Group 2) PLTS < 100,00, PRED (Group 3) 	Median duration of 2 years NRM Group I (21%), II (40%), III (58%) Iv. II p = 0.003; Iv. III p = 0.002 Survival at 5 years Group I (61%), II (47%), III (26%) Iv. II P = 0.03; Iv. III p = 0.001 Infection rate: III > II > I

CNI (calcineurin inhibitor), PLTs (platelets), CSP (cyclosporine), PRED (prednisone), AZA (azathioprine), PLTs (platelets), NRM (non-relapse mortality), TRM (transplant-related mortality), OS (overall survival), IST (immuno-suppressive therapy)

Previous Studies cont.

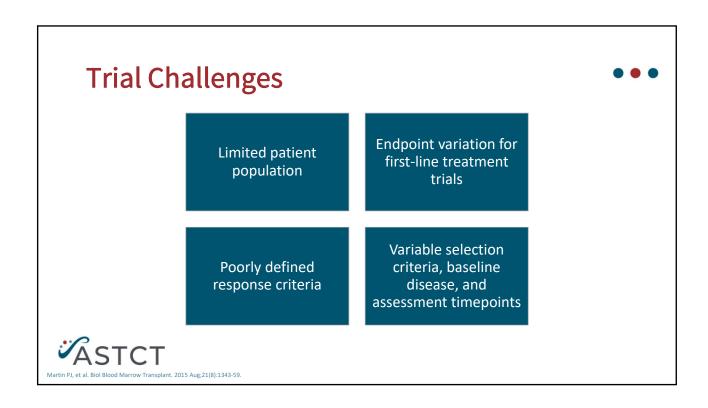
Study (date)	Design	Population	Intervention	Outcome
MMF – M, et al. Blood. 2009.	Double-blind, randomized multicenter trial	Within 14 days of cGVHD s/sCNI +/- PREDN=230	MMF (1000 mg with CSP or 750 mg BID) Placebo First-line	Resolution of cGVHD at 2yr MMF (23%) vs. placebo (18%) Death MMF vs. placebo HR 1.99 (95% CI; 0.9-4.3)
Thalidomide – A, et al. Biol Blood Marrow Transplant. 2001.	Prospective randomized, open-lab trial	Extensive cGVHD N=54	• CSP + PRED +THAL (200-800 mg/day) • CSP + PRED	Response rate (P = 0.5) at 1yr Thal (85%) vs. no thal (73%) Survival at 1yr Thal (66%) vs. no thal (74%)
Thalidomide – K, et al. Blood. 2000.	Randomized, placebo- controlled, double-blind trial	 PRED + CSP/TAC Poor prognosis: TCP or acute to chronic N=51 	THAL 200-800 mg/dayPlaceboFirst-line	Drug Discontinuation (P = 0.2) Thalidomide(92%); 53 days Placebo (65%); 245 days Safety Neutropenia Neurologic symptoms

MMF (mycophenolate mofetil) TCP (thrombocytopenia), CSP (cyclosporine), PRED (prednisone), THAL (thalidomide), TAC (tacrolimus)

rtin PJ, et al. Blood. 2009;113:5074-5082.

Bottom Line

Agent	Advantages	Disadvantages
Steroids	Sufficient as single agent in mild Best efficacy first-line	Osteoporosis, avascular necrosis of the bone, diabetes
CNI	Steroid sparing Severe or moderate CNI dependent	Renal toxicity, hypertension Only in combination with steroids
MMF	-	GI complaints, infectious and relapse risk Failed to improve efficacy
Azathioprine	-	Hematologic toxicity, infectious risk Mortality
Thalidomide	Concomitant relapse of multiple myeloma	Neurotoxicity, sedation, constipation, thrombosis

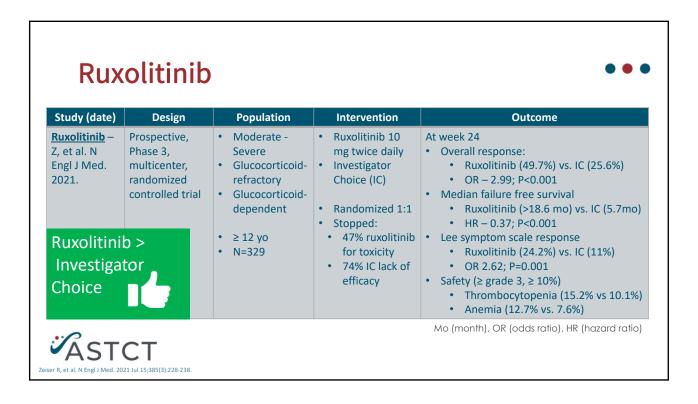


Non-Responders

• Only half of patients respond to first line therapy . . .

Term	Action	Steroid and Dose	Time
Steroid-refractory	Progression despite	prednisone ≥ 1 mg/kg/day	≥ 1 week
	Persistence despite	prednisone at ≥ 0.5 mg/kg/day or 1 mg/kg every other day	≥ 4 weeks
Steroid-dependent	Steroids onboard to prevent recurrence or progression	prednisone doses > 0.25 mg/kg/day or >0.5 mg/kg every other day	≥ 2 unsuccessful attempts to taper, separated by at least 8 weeks

Second Line Therapy



Trial-and-Error System

- CNI (cyclosporine, tacrolimus)
- Extracorpeal photopheresis (ECP)
- mTOR inhibitors (e.g., sirolimus)
- Monoclonal antibodies (e.g., rituximab, alemtuzumab)
- Chemotherapy (e.g. methotrexate, cyclophosphamide, pentostatin)
- Tyrosine kinase inhibitors (e.g., imatinib, ruxolitinib, ibrutinib)
- Hydroxychloroquine
- Etanercept
- Interleukin-2

Ibrutinib - FDA Approved Study (date) Design **Population** Intervention Outcome Ibrutinib – M, Multicenter, Moderate - severe Ibrutinib 420 Median follow-up 13.9 months et al. Blood. open-label, Glucocorticoidmg daily Best overall response (67%) 2017. single-arm refractory Sustained response ≥ 20 weeks (71%) study Glucocorticoid-Median corticosteroid dose reduction dependent 0.29 mg/kg/day to 0.12 mg/kg/day Failed ≤ 3 prior LOT (week 49) • Discontinued steroids (n=5) N=42 Safety • Common: fatigue, diarrhea, muscle spasms, nausea, bruising ≥ Grade 3, ≥ 10%: fatigue, diarrhea, pneumonia Ibrutinib | ≥ Grade 3, ≥ 5%: pyrexia, headache, hyperglycemia, hypokalemia LOT (lines of therapy)

Cost-Effectiveness

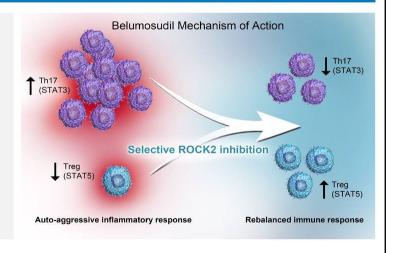
Study (date)	Design	Population	Intervention	Outcome
Steroid refractory – Y, et al. Biol Blood Marrow Transplant. 2018.	Meta- analysis	 Sole therapy for Steroid Refractory cGVHD 1/2000 – 5/2016 41 Studies N=1047 	Tacrolimus Sirolimus Rituximab Ruxolitinib Hydroxychloroquine Imatinib Bortezomib Ibrutinib ECP Pomalidomide Methotrexate (MTX)	Complete response (CR) Rituximab or MTX (7-30%) Overall response rate (ORR) Tacrolimus or ruxolitinib (30-85%) Cost per CR Ruxolitinib (\$1,187,657) MTX (\$680) Cost per ORR MTX (\$453) Ibrutinib (\$242,236) Most cost-effective MTX for all organ systems Least cost-effective Pomalidomide & Imatinib

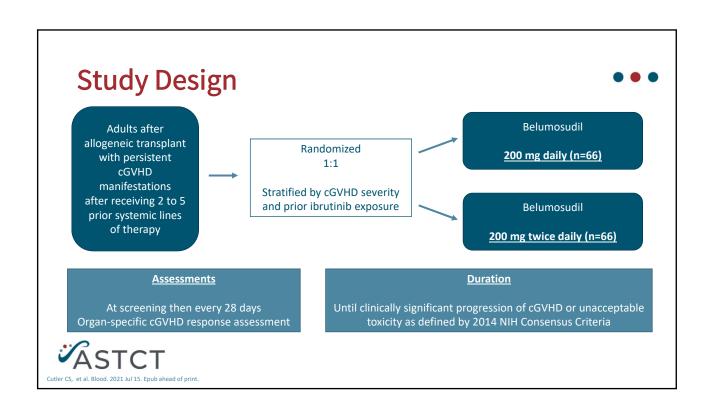
Gaps in Therapy

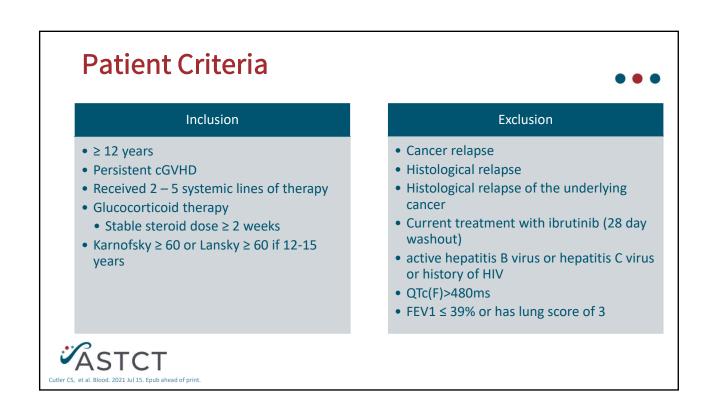
- Treatment is a balance between efficacy of regimen and toxicity of agents
 - Agents with minimal toxicity for long-term use are needed
 - IST can increase the risk of infection, secondary malignancy, and organ toxicities
- Effective, targeted agents are lacking

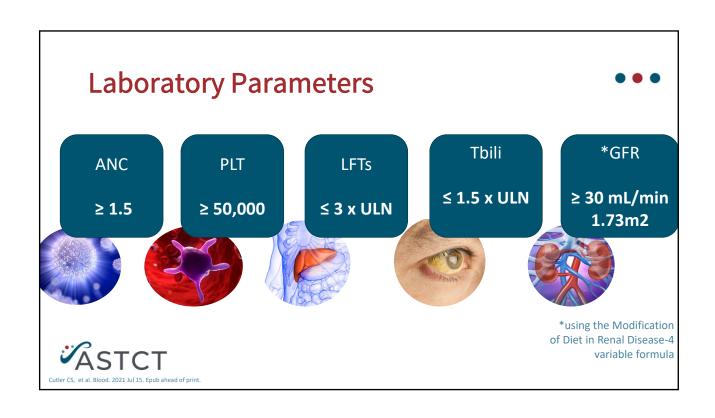
Belumosudil for Chronic Graft-versus-Host Disease (cGVHD) After 2 or More Prior Lines of Therapy: The ROCKstar Study

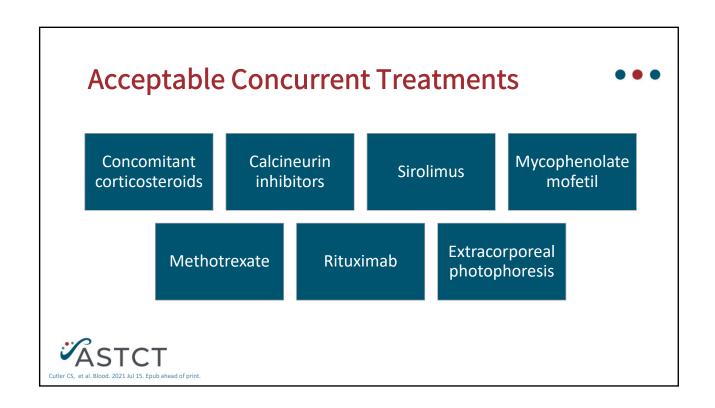
Blood. 2021 Jul 15:blood.2021012021. Epub ahead of print. PMID: 34265047.




ROCK2 Plays Key Role in Immune Diseases


ROCK2 Inhibition Rebalances Immune Response to Treat Immune Dysfunction^{1,2}


- ROCK2 inhibition rebalances the immune system:
 - Downregulates pro-inflammatory Th17 cells
 - Increases regulatory T (Treg) cells



¹Proc Natl Acad Sci, 2014 ²Blood, 2016 Kadmon 1 7

Outcomes

Primary

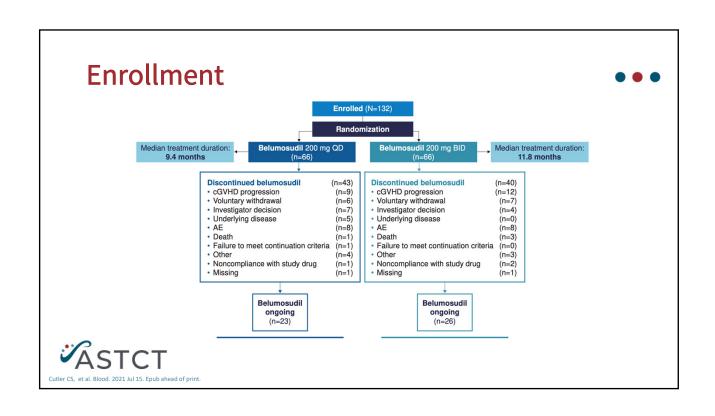
Best overall response

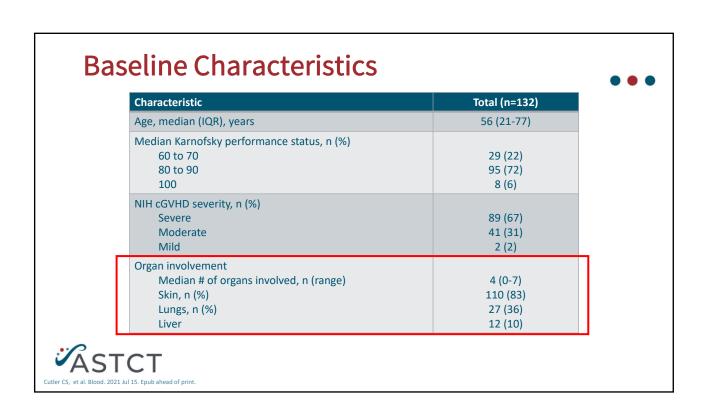
rate at any time

Secondary

- Failure free survival
- Overall Survival
- Duration of response
- Change in Lee Symptom Scale
- Change in corticosteroid dose
- Change in cGVHD global severity rating
- Change in symptom activity

<u>Safety</u>


- Adverse event
- Serious adverse event
- Relative dose intensity

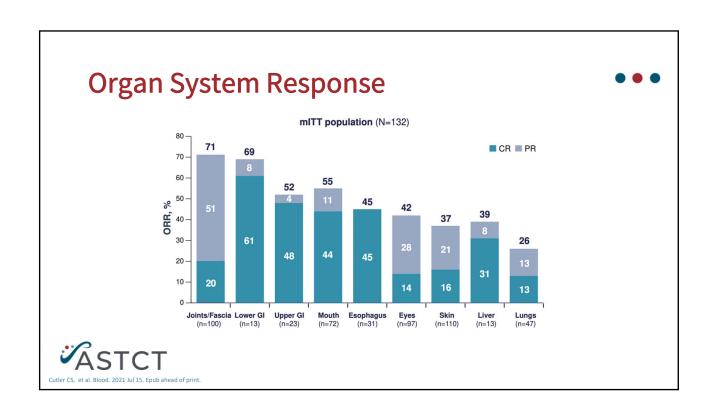


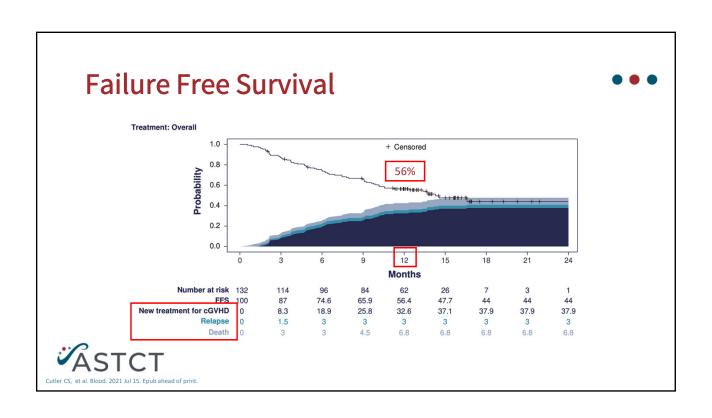
Statistical Analysis

- 90% Power
 - 63 subjects per treatment arm, 10% dropout
 - ORR with 95.5% confidence interval lower bound of 30%
- Multiplicity analysis Hochberg procedure
- Modified intent to treat population: ≥ 1 dose (goal n=126)
 - Interim (IA) 2 months with one sided alpha of 0.0025
 - Primary 6 months with one sided alpha of 0.0225 (0.025 if IA significant)
 - Follow-up 12 months
- Descriptive ITT population

Baseline cGVHD Therapy

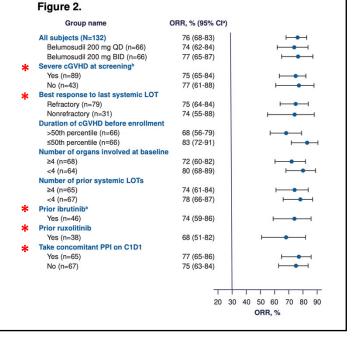
Therapy	Total (n=132)
Prior lines of therapy (LOT), median	3
Refractory to prior LOT, n (%)	79 (72)
Prior LOT type, n (%) CNI Sirolimus Ruxolitinib Ibrutinib MMF Rituximab ECP	87 (66) 62 (47) 38 (29) 45 (34) 33 (25) 28 (21) 63 (48)
Concomittant therapy, n (%) CNI ECP Sirolimus MMF Prednisone-equivalent dose at enrollment,	49 (37) 39 (30) 35 (27) 13 (10) 0.2 (0.03-1.07)


Results


	200 mg qday (n=66)	200 mg BID (n=66)	Total (n=132)
ORR, % (95% CI) Within 6 months CR, n (%) PR, n (%)	74 (62-84)	77 (65-87)	76 (68-83)
	71 (59-82)	73 (60-83)	72 (64-80)
	2 (3)	1 (2)	3 (2)
	45 (68)	47 (71)	92 (70)
Clinically significant improvement in LSS, n (%) Responder Non-responder	39 (59)	41 (62)	80 (61)
	34 (69)	36 (71)	70 (70)
	5 (29)	5 (33)	30 (31)
Steroid reduction, n (%) Δ from BL, mean, % Responder Non-responder Discontinuation, n (%)	42 (64)	44 (67)	86 (65)
	-43	-48	-45
	-49	-22	-54
	-22	-10	-16
	13 (20)	15 (23)	28 (21)
TTR, median, weeks (range) Responder DOR, median, weeks	NR	NR	5 (4-66)
	NR	NR	54
2-year OS, % (95% CI)	NR	NR	89 (82-93)

ASTCT 1910 A 2021 In 12 5 Found above

ORR (overall response rate), CR (complete response), PR (partial response), LSS (lee symptom scale), BL (baseline), TTR (time to response), DOR (duration of response), OS (overall survival), NR (not reported)


14

Subgroup Analysis

 ORR maintained across subgroup analysis

Safety

	200 mg qday (n=66)	200 mg BID (n=66)	Total (n=132)
Any adverse event, no (%)	65 (99)	66 (100)	131 (99)
Grade ≥ 3 adverse events, no (%)	37 (56)	34 (52)	71 (54)
SAEs	27 (41)	23 (35)	50 (38)
Drug-related SAEs	5 (8)	2 (3)	7 (5)
RDI, median			99.7%

- 200 mg qday Grade 3 or 4, ≥ 5%
 - Pneumonia (9%)
 - Hypertension (6%)
 - Hyperglycemia (5%)

SAEs (serious adverse events), RDI (relative dose intensity)

- 200 mg BID Grade 3 or 4, $\geq 5\%$
 - Pneumonia (6%)
 - Hypertension (6%)
 - Hyperglycemia (5%)

Common (≥ 20%)

Fatigue, diarrhea, nausea, cough, URTI, dyspnea, headache, peripheral edema, vomiting, muscle spasm

Author's Conclusions

200 mg qday

Sustained, clinically meaningful responses

• regardless of response to prior treatment, severity of cGVHD, number of organs involved

Dosing and formulation are convenient

Well tolerated

- population vulnerable to AEs and IST
- remained on therapy

Improved QOL

Critiques

- Strengths
 - Well written and designed concise
 - Novel therapy needed for this population
 - Response despite difficult to treat population
 - Generalizable population was clearly defined
- Weaknesses
 - Lack of control group
 - Drop-out

Reviewer's Conclusions

- Belumosudil is a targeted agent to be considered in patients with refractory cGVHD after ≥ 2 LOTs
- Despite reported percentages of AEs, belumosudil does not appear to significantly increase expected AEs from cGVHD therapy
- Provides convenient dosing for patients
- Further questions
 - Efficacy/safety in earlier stages of cGVHD
 - Cost

Belumosudil Monitoring/ Management

- Monitoring
 - Pregnancy test at initiation
 - Initial labs: ANC ≥ 1.5, PLTs ≥ 50,000, eGFR ≥ 30
 - Tbili, AST/ALT → at least monthly
 - AEs: infection, infertility, edema, HTN, hyperglycemia
- Management
 - Film-coated Do not crush
 - Drug-Drug interactions: gastric pH, CYP3A4
 - Administer with a meal

Test your knowledge

Which of the following statements about the ROCKstar study is true?

- A. Patients on concurrent treatment with ibrutinib were included
- B. Patients with were randomized after steroids alone
- C. Patients were randomized to belumosudil 200 mg daily, 200 mg BID, or best available therapy
- D. Patients with known active hepatitis B virus or hepatitis C virus or history of HIV were excluded.

Knowledge Check

Which of the following statements about the ROCKstar study is true?

- A. Patients on concurrent treatment with ibrutinib were included
- B. Patients were randomized after steroids alone
- C. Patients were randomized to belumosudil 200 mg daily, 200 mg BID, or best available therapy
- D. Patients with known active hepatitis B virus or hepatitis C virus or history of HIV were excluded.

Knowledge Check

DK is a 35 yo female with T-cell non-Hodgkin lymphoma underwent 10/10 HLA-matched unrelated-donor peripheral blood HSCT. At her 25 month visit she was diagnosed refractory, severe cGVHD and is on treatment with tacrolimus, high-dose steroids, and rituximab. Her symptoms have persisted, and she is being considered for Belumosudil.

What is/are pertinent counseling points for Belumosudil?

- A. Concurrent therapy with proton pump inhibitors require dose adjustment
- B. Infertility risks and contraception in females of reproductive potential
- C. Take belumosudil with food
- D. All of the above

Test your knowledge

DK is a 35 yo female with T-cell non-Hodgkin lymphoma underwent 10/10 HLA-matched unrelated-donor peripheral blood HSCT. At her 25 month visit she was diagnosed refractory, severe cGVHD and is on treatment with tacrolimus, high-dose steroids, and rituximab. Her symptoms have persisted, and she is being considered for Belumosudil.

What is/are pertinent counseling points for Belumosudil?

- A. Concurrent therapy with proton pump inhibitors require dose adjustment
- B. Infertility risks and contraception in females of reproductive potential
- C. Take belumosudil with food
- D. All of the above

Questions?

Belumosudil for Chronic Graft-versus-Host Disease (cGVHD) After 2 or More Prior Lines of Therapy: The ROCKstar Study

E. Behren Ketchum, PharmD PGY2 Oncology Pharmacy Resident Augusta University Medical Center University of Georgia College of Pharmacy

Email: eketchum@augusta.edu

